Spatio-temporal geostatistics

ECAS2019: Statistical Analysis for Space-Time Data

Lisboa, Portugal

15-17 July, 2019

- '60 Foundation at MinesParisTech by G. Matheron
- '90 Mostly mining and petroleum applications; some environment Very little space × time
- '10 most data are spatio-temporal

Georges Matheron, Wikipedia

- Predict (maping) $Z(s_0)$, $Z(s_0)$ not observed or $\int_B Z(s) ds$?
- Simulations, conditional simulations ?
- Spatial modeling (regression with spatial dependence) ?

Why is it important to take into account spatial dependence ?

- Spatial dependence induces redundancy in the data
- The equivalent number of independent data is lower (because the correlation is generally positive)
- Not taking into account the spatial correlation leads to
 - errors in confidence intervals
 - errors in p-values, and hence in test conclusions
- Spatial dependence brings information : when the locations are nearby the associated random variables are correlated (Tobler's law) → useful for prediction

- Data are collected with space (S) and time (T) coordinates
- We wish to account for space-time interaction
 - trends
 - dependencies

 \hookrightarrow Generalization of both spatial statistics and time series

Several space-time data configuration are possible

Dense in time, scarce in space

- Use multivariate time series?
- What model in space? How do we interpolate at a new site?

Dense in space, scarce in time

- Use multivariate spatial statistics
- What evolution in time ? How do we perform temporal prediction ?
- \bullet One possibility : spatial field \bigotimes ARMA process

Spatio temporal data

Other configurations Dense in space and time

- No particular emphasis on space and/or time
- $\bullet\,$ special interest in the space $\times\,$ interaction
- Focus on prediction at unmeasured locations

Even more complex

- no time alignment
- scarcity in space and time
- data along trajectories from moving devices, ...

P. Gloaguen, PhD

Some challenges

• Relatively large datasets

 $N_T\times N_S\times N_p$ is usually very large. "Big N problem" in all aspects of data manipulation: memory, vizualization, computations, ...

• Statistical model

space-time interaction: time arrow, causality and physical laws \hookrightarrow specific covariance models

- Estimation (fitting) and Prediction (kriging) → max likelihood usually intractable; specific algorithms are required
- Simulation: few algorithms; still lot to do

Spatio temporal data

Some books

a paper

Analyzing spatio-temporal data with R: Everything you always wanted to know – but were afraid to ask

Titre: Donnees spatio-temporelles avec R : tout ce que vous avez toujours voulu savoir sans jamais avoir osé le demander

RESSTE Network et al.1,2

https://informatique-mia.inra.fr/resste/paper-workshop

ECAS (Lisboa, Portugal)

Spatio-temporal geostatistics

15-17 July, 2019 10 / 70

French pollution data

- Ambient air pollution assessed through monitoring network
 - ▶ 4 pollutants : ozone, nitrogen dioxide, particulate matter PM₁₀, PM₂₅
 - daily and hourly data for the year 2014
 - 507 stations (rural, suburban, urban)
 - 42% missing data
- Air quality modeling simulating physical and chimical processes
 - chemistry-transport model CHIMERE
 - hourly time step
 - rectangular grid covering France resolution 10km

FIGURE 1. Lambert93 (left) vs WSG84 (right) coordinates reference systems for the French PM_{10} concentration forecasts by the CHIMERE model on the 15th of June 2014.

Spatio-temporal geostatistics

Statistical model

$$Z(\mathbf{s},t) = \mu(\mathbf{s},t) + Y(\mathbf{s},t) + \varepsilon(\mathbf{s},t) \qquad (\mathbf{s},t) \in D \times T \subset \mathbb{R}^d \times \mathbb{R}$$

 $\bullet \ \mu(\mathbf{s},t)$ is a trend term

$$\mu(\mathbf{s},t) = \sum_{k=1}^{p} \beta_k f_k(X_k(\mathbf{s})) + \sum_{\ell=1}^{q} \alpha_\ell f_\ell(X_\ell(t))$$

- $\bullet~Y(\mathbf{s},t)$ is a spatially correlated random effect
- $\varepsilon(\mathbf{s}, t)$ is an independent error (nugget effect)

Stationary process

 $Y(\mathbf{s},t)$ is a second order stationary random field i. e.

$$E(Y(\mathbf{s},t)) = \mu(=0)$$

Cov(Y(\mathbf{s}+\mathbf{h},t+u),Y(\mathbf{s},t)) = C(\mathbf{h},u)

Spatial random field

Property

If $C(\cdot)$ is the covariance function of a second order stationary process, then

- $\forall h \in \mathbb{R}^2$ C(h) = C(-h)
- C(0) = Var(Z(s))
- $\forall h \in \mathbb{R}^2 \quad |C(h)| \le C(0)$
- $C(\cdot)$ is positive definite i.e. $\forall s_1, \ldots, s_n, \quad \forall \lambda_1, \ldots, \lambda_n \quad \sum_{ij} \lambda_i \lambda_j C(s_i - s_j) \ge 0$

Property

- The sum and the product of two positive definite functions are positive definite functions.

- A linear combination with positive coefficients is a positive definite function.

Definition

 ${\it Z}$ is a process with stationary increment if the increments of ${\it Z}$ are second-order stationary, i.e.

$$E(Z(s) - Z(s')) = 0$$
 $Var(Z(s) - Z(s')) = 2\gamma(s - s')$

Property

$$-\gamma(h) \ge 0, \ \gamma(0) = 0, \ \gamma(-h) = \gamma(h)$$

 $-\lim_{\|h\| \to \infty} \frac{\gamma(h)}{\|h\|^2} = 0$

- if the random process is second order stationary

$$\gamma(h) = C(0) - C(h)$$

- if $\lim_{|h|\to\infty}\gamma(h)=\ell<+\infty$ then the random process is second order stationary and $\ell=C(0)$

Definition

An authorized linear combination (ALC) for a random process Z is a linear combination such that:

$$Var\left(\sum_{i} \lambda_i Z(s_i)\right) < +\infty$$

Proposition

The authorized linear combination (ALC) for a random process Z with stationary increments are such that

$$\sum_{i} \lambda_{i} = 0$$

Property

The variogram function is conditionally negative definite i.e.

$$\begin{aligned} \forall s_1, \dots, s_n, \quad \forall \lambda_1, \dots, \lambda_n \text{ with } \sum_{i=1}^n \lambda_i &= 0 \\ \sum_{ij} \lambda_i \lambda_j \gamma(s_i - s_j) &\leq 0 \end{aligned}$$

Variogram

Some admissible variogram functions

$$\begin{array}{l} - \mbox{ constant } \gamma(h) = C \\ - \mbox{ exponential } \gamma(h) = C(1 - \exp(-|h|/\rho)) \quad C > 0 \quad \rho > 0 \\ - \mbox{ spherical } \gamma(h) = \left\{ \begin{array}{cc} C \big(\frac{3}{2} \frac{|h|}{\rho} - \frac{1}{2} \frac{|h|^3}{\rho^3} \big) & \mbox{if } 0 \leq |h| \leq \rho \\ C & \mbox{if } |h| \geq \rho \end{array} \right. \\ - \mbox{ Gaussian } \gamma(h) = C(1 - \exp(-|h|^2/\rho)) \quad C > 0 \quad \rho > 0 \\ - \mbox{ power } \gamma(h) = C|h|^{\alpha} \quad \alpha < 2 \\ - \ \ldots \end{array}$$

Matern class

$$\gamma(h) = C \left[1 - \frac{1}{2^{\nu-1} \Gamma(\nu)} \left(\frac{2\nu^{1/2}h}{\rho} \right) \mathcal{K}_{\nu} \left(\frac{2\nu^{1/2}h}{\rho} \right) \right]$$

 \mathcal{K}_{ν} : modified Bessel function of the third kind , order ν

 ν : tunes the regularity near 0.

- $\nu = 1/2$: exponential
- $\nu \to +\infty$: Gaussian

Variogram

Variogrammes de Matern

ECAS (Lisboa, Portugal)

Spatio-temporal geostatistics

Separability

Definition

The spatio-temporal covariance function C_{ST} is separable if

 $C_{ST}(\mathbf{h}, u) \propto C_S(\mathbf{h}) C_T(u) \qquad \forall \mathbf{h}, u$

It is equivalent to conditional independence:

 $Z(\mathbf{s},t) \perp Z(\mathbf{s}',t') | Z(\mathbf{s},t') \qquad \forall \mathbf{s}, \mathbf{s}' \in D; \quad \forall t,t' \in T$

Advantages

- Easy to understand; less memory and easier coding
- Matrix computation is fast thanks to the Kronecker product

Drawbacks

- No complex space-time interaction
- not realistic in many applications, especially environmental.

\hookrightarrow Towards non separable covariance models

Definition

The spatio-temporal covariance function C_{ST} is fully symmetric if

$$C_{ST}(\mathbf{h}, u) = C_{ST}(-\mathbf{h}, u) = C_{ST}(\mathbf{h}, -u) = C_{ST}(-\mathbf{h}, -u) \qquad \forall \mathbf{h}, u$$

Separability \implies full symmetry

• Positively non separable if

$$\rho_{ST}(\mathbf{h}, u) > \rho_S(\mathbf{h})\rho_T(u)$$

Negatively non separable if

$$\rho_{ST}(\mathbf{h}, u) < \rho_S(\mathbf{h}h)\rho_T(u)$$

• Some covariance functions are not uniformly positively or negatively non separable

Separability factor

$$C_{ST}(\mathbf{h}, u) / \sigma_{ST}^2 - C_S(\mathbf{h}) C_T(u) / \sigma_{ST}^4$$

is 0 when separable

ECAS (Lisboa, Portugal)

• Product sum model (De Iaco, Myers, Posa, 2001)

$$C(\mathbf{h}, u) = a_0 C_S^0(\mathbf{h}) C_T^0(u) + a_1 C_S^1(\mathbf{h}) + a_2 C_T^2(u) \qquad a_0, a_1, a_2 > 0$$

Negatively non separable

• "Frozen model" (Briggs, 1968)

$$C(\mathbf{h}, u) = C_S(\mathbf{h} - vu)$$

where v is a velocity

• Gneiting class

$$C(\mathbf{h}, u) = \frac{\sigma^2}{\psi(u^2)^{1/2}} \varphi\left(\frac{\|\mathbf{h}\|}{\psi(u^2)}\right) \qquad (\mathbf{h}, u) \in \mathbb{R}^d \times \mathbb{R}$$

where $\varphi(t)$ is a completely monotonic function and $\psi(t)$ is a positive function such that $\psi'(t)$ is completely monotonic. Positively non separable

An ubiquitous model

Gneiting-Matern class of spatio-temporal covariance model

$$\varphi(\mathbf{h}) = \mathcal{M}(\mathbf{h}; r, \nu) \qquad \psi(t) = (at^a + 1)^b, \qquad t \ge 0$$

with $\alpha,r,\nu>0,\, 0< a\leq 1,\, 0\leq b\leq 1$

$$C(\mathbf{h}, u) = \frac{\sigma^2}{(\alpha |u|^{2a} + 1)^{b/2}} \mathcal{M}\left(\frac{\mathbf{h}}{(\alpha |u|^{2a} + 1)^b}; r, \nu\right) \qquad (\mathbf{h}, u) \in \mathbb{R}^d \times \mathbb{R}$$

Can be generalized to multivariate data (Bourotte, Allard and Porcu, 2017)

Variogram estimation

Spatial random field

Variogram cloud

$$\gamma_{ij}^* = \frac{(z(s_i) - z(s_j))^2}{2} \qquad d_{ij} = \|s_i - s_j\|$$

Empirical variogram

$$\widetilde{\gamma}(d_k) = \frac{1}{2n_c} \sum_{i,j \in C(k)} (Z(s_i) - Z(s_j))^2 \quad i,j \in C(k) \Leftrightarrow (k-1)\delta \le ||s_i - s_j|| \le k\delta$$

Fitting the variogram

 $\gamma_{\theta,\tau}$ an admissible variogram, $(\theta\tau)$ are solution of

$$\min_{\theta,\tau} \sum_{k=1}^{K} (\gamma_{\theta,\tau}(d_k) - \widetilde{\gamma}(d_k))^2$$

Parameters $\theta = (\mu, \sigma^2, r_S, r_T, b, \ldots)$

- Fitting: Empirical variogram + (weighted) least squares (gstat, Rgeostats, RandomFields)
- Maximum Likelihood: (RandomFields)
- Tapering: multiply $C(\mathbf{h}, u)$ with a compactly supported covariance function \hookrightarrow sparse structure.
- Composite likelihood, e.g. Pairwise Likelihood (CompRandFld)

Definition

$$PL(\theta, z) = \prod_{i,j} f_{\theta;i,j}(z_i, z_j)$$

 $f_{\theta;i,j}(z_i, z_j)$ is one of the following density

$$(z(\mathbf{s}_i, t_i), z(\mathbf{s}_j, t_j))$$
 $z(\mathbf{s}_i, t_i)|z(\mathbf{s}_j, t_j)$ $z(\mathbf{s}_i, t_i) - z(\mathbf{s}_j, t_j)$

PL estimator

$$\widehat{\theta}_{PL} = \operatorname{argmax}_{\theta} \operatorname{PL}(\theta; \mathbf{z})$$

- Reduced computations if restricted to pairs that are close in space and time
- Good statistical properties (consistence, bias) but $Var(\widehat{\theta}_{PL}) \leq Var(\widehat{\theta}_{\ell})$
- Not efficient for confidence intervals, hypothesis testing

Choose the type of separability (negative, null, positive)

- Visual comparison (very difficult in a spatio-temporal context, even more so if multivariate)
- CLIC (Composite Likelihood Information Criterion)
- Cross validation (find the correct scheme)

Estimating correctly the spatio-temporal dependence is of paramount importance.

Empirical spatio-temporal variogram

plot(vvst) # sample variograms at each time lag plot(vvst,map=FALSE) # ST-variogram map plot(vvst,wireframe=TRUE) # ST-variogram wireframe

Variogram models with gstat

Empirical spatio-temporal variogram

FIGURE 6. Empirical and fitted variograms for a product-sum model. Upper line: WLS fit with fit.StVariogram Lower line: manual fit. Left: empirical vs. fitted variogram for different time lags (plot arguments all=7, map=7). Middle: marginal temporal variogram. Right: difference map of space-time variogram values (plot arguments aiff=7, map=7).

Variogram models with CompRandFld

```
#space-time separable exponential model without nugget
cormod1 <- "exp_exp"</pre>
fixed1 <- list(mean=mean_est,nugget=0,sill=var_est)</pre>
start1 <- list(scale_s=200,scale_t=2)</pre>
#space-time separable exponential model with nugget
cormod2 <- "exp_exp"</pre>
fixed2 <- list(mean=mean_est,sill=var_est)</pre>
start2 <- list(scale_s=200,scale_t=2,nugget=0)</pre>
#Gneiting model with powers fixed to 1, without nugget
cormod3 <- "gneiting"</pre>
fixed3 <- list(sill=var_est,mean=mean_est,nugget=0,power_s=1,power_t=1)</pre>
start3 <- list(scale_s=200,scale_t=2,sep=.5)</pre>
#Gneiting model with powers fixed to 1, with nugget
cormod4 <- "gneiting"</pre>
fixed4 <- list(sill=var_est,mean=mean_est,power_s=1,power_t=1)</pre>
start4 <- list(scale_s=200,scale_t=2,sep=.5)</pre>
```

```
#Gneiting model with powers fixed to .5, without nugget
cormod5 <- "gneiting"</pre>
fixed5 <- list(sill=var_est,mean=mean_est,nugget=0,power_s=.5,power_t=.5)</pre>
start5 <- list(scale_s=200,scale_t=2,sep=.5)</pre>
#Gneiting model with powers fixed to .5, with nugget
cormod6 <- "gneiting"</pre>
fixed6 <- list(sill=var_est,mean=mean_est,power_s=.5,power_t=.5)
start6 <- list(scale_s=200,scale_t=2,sep=.5)</pre>
#Gneiting model where powers are estimated, without nugget
#difficult to propose good starting values, but we will take estimated para
cormod7 <- "gneiting"</pre>
fixed7 <- list(sill=var_est,mean=mean_est,nugget=0)</pre>
#Gneiting model where powers are estimated, with nugget
#difficult to propose good starting values, but we will take estimated para
cormod8 <- "gneiting"</pre>
fixed8 <- list(sill=var_est,mean=mean_est)</pre>
```

Empirical spatio-temporal variogram

FIGURE 5. Visual diagnostics for model 1 adjusted with the composite likelihood approach of ComphandF1d. Above: Empirical and fitted space-time variograms, here plotted with the Covariogram function. Below: Empirical and fitted marginal covariance functions for space (left) and time (right).

Spatial prediction: kriging

 $Z(s_1) = z(s_1), \ldots, Z(s_n) = z(s_n)$ observed, predict $Z(s_0)$

Optimal predictor:

$$p^{opt} = \mathsf{E}(Z(s_0)|Z(s_1) = z(s_1), \dots, Z(s_n) = z(s_n))$$

minimize quadratic risk

$$\mathsf{E}\big((Z(s_0) - \widehat{Z}(s_0))^2\big)$$

Best Linear Unbiased Predictor(BLUP) :

$$p^* = \mu + \sum_{i=1}^n \lambda_i Z(s_i)$$

If Z Gaussian, $p^{opt} = p^*$

Solution

$$\lambda = C^{-1}c \qquad C_{i,j} = \operatorname{cov}(Z(s_i), Z(s_j)) \quad c_i = \operatorname{cov}(Z(s_0), Z(s_i))$$
$$\mu = \mathsf{E}(Z(s_0)) - \sum_{i=1}^n \lambda_i \mathsf{E}(Z(s_i))$$

D. Krige : South African mining engineer

 $C \ {\rm and} \ m(s) \ {\rm known}$

$$\widehat{Z(s_0)} = {}^{t}cC^{-1}(Z-m) + m(s_0)$$

Kriging variance

$$\sigma_{SK}^{2} = \mathsf{E}\big((Z(s_{0}) - \widehat{Z}(s_{0}))^{2}\big) = \sigma^{2}(s_{0}) - {}^{t}cC^{-1}c$$

If $s_0 = s_i$, then

 $\widehat{Z(s_i)} = Z(s_i)$

C et m(s) have to be estimated.

 $Z(s) = \mu + \delta(s)$, with stationary increments. $\widehat{Z}(s_0) = \sum_{i=1}^n \lambda_i Z(s_i) \text{ such that}$ $E(\widehat{Z}(s_0)) = E(Z(s_0)) \text{ and } E(\widehat{Z}(s_0) - Z(s_0))^2 \text{ minimum}$

$$\begin{aligned} \mathsf{variogram} &: \gamma(h) = \frac{1}{2} \mathsf{Var}(Z(s+h) - Z(s)) \\ (\lambda_i)_{i=1,n}, \left(\sum_{i=1}^n \lambda_i = 1 \right) \text{ solution of the linear system} \\ & \begin{pmatrix} 0 & \gamma(s_1 - s_2) & \dots & \gamma(s_1 - s_n) & 1 \\ \gamma(s_1 - s_2) & 0 & \dots & \gamma(s_2 - s_n) & 1 \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \gamma(s_1 - s_n) & \gamma(s_1 - s_n) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \dots \\ \lambda_n \\ \alpha \end{pmatrix} = \begin{pmatrix} \gamma(s_0 - s_1) \\ \gamma(s_0 - s_2) \\ \dots \\ \gamma(s_0 - s_n) \\ 1 \end{pmatrix} \end{aligned}$$

Kriging variance

$$\sigma_K^2(s_0) = E((\widehat{Z}(s_0) - Z(s_0))^2) = \alpha + \sum_{i=1}^n \lambda_i \gamma(s_i - s_0)$$

Remarks

i) The λ_i may be negative, or greater than 1.

ii) If $s_0 \in \{s_1, \ldots s_n\}$ then $\lambda_i = 1$, $\lambda_j = 0$, $j \neq i$, and $\sigma_K^2(s_i) = 0$

iii) The kriging weights depend on the arrangement of the measurement locations, on the location of the prediction, on the sample size and on the variogram function.

If there is a spatial trend

 $Z(s) = \mu(s) + \delta(s)$ δ with stationary increments $\mathsf{E}(\delta) = 0$

Modelling the trend $E(Z(s)) = \mu(s)$, $\mu(s) = \sum_{j=0}^{p} \beta_j f_j(s)$ $f_0(s) = 1$, $f_1(s) = x$, $f_2(s) = y$, $f_3(s) = xy, \dots, s = (x, y)$, (β_j) unknown

Linear predictor $\widehat{Z}(s_0) = \sum_{i=1}^n \lambda_i Z(s_i)$ Unbiased conditions (universality):

$$\sum_i \lambda_i f_k(s_i) = f_k(s_0)$$
, $k = 0, \dots p$

$\gamma(\cdot)$ is the $\delta\text{-variogram}$

$$\begin{pmatrix} 0 & \dots & \gamma(s_1 - s_n) & f_0(s_1) & \dots & f_p(s_1) \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \gamma(s_1 - s_n) & \dots & 0 & f_0(s_n) & \dots & f_p(s_n) \\ \vdots & \dots & \dots & \dots & \dots & \dots & 0 \\ f_p(s_1) & \dots & f_p(s_n) & & & & \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \\ \alpha_0 \\ \vdots \\ \alpha_p \end{pmatrix} = \begin{pmatrix} \gamma(s_0 - s_1) \\ \vdots \\ \gamma(s_0 - s_n) \\ f_0(s_0) \\ \vdots \\ f_p(s_0) \end{pmatrix}$$

Kriging variance
$$\sigma_{KU}^2(s_0) = \sum_{i=1}^n \lambda_i \gamma(s_0 - s_i) + \sum_{j=1}^{p+1} \alpha_{j-1} f_{j-1}(s_0)$$

 $\delta\text{-variogram}$ estimation

$$\frac{1}{2}(\delta(s_i) - \delta(s_j))^2 = \frac{1}{2} \left(Z(s_i) - Z(s_j) - \sum_{k=1}^{p+1} \beta_{k-1}(f_{k-1}(s_i) - f_{k-1}(s_j)) \right)^2$$

 β_i have to be estimated.

$$\widehat{\beta} = (X^t \Sigma^{-1} X)^{-1} X^t \Sigma^{-1} Z \qquad \Sigma = \operatorname{cov}(\delta)$$

Iterative procedure:

- estimate β using OLS,
- fit the variogram from the residuals,
- estimate β using GLS,

- ...

Maximum likelihood : estimate regression parameters and variogram parameters, assuming $Z(\boldsymbol{s})$ Gaussian

External drift :

$$Z(s) = \beta_0 + \beta_1 \varphi(s) + \delta(s)$$

 $\varphi(s) \text{ known } \forall s \in D$

$$\widehat{Z}(s_0) = \sum_{i=1}^n \lambda_i Z(s_i)$$

Regression kriging :

$$Z(s) = \beta X(s) + \delta(s)$$
$$\widehat{\beta} = (X^{t}X)^{-1}X^{t}Z \quad , \quad \widehat{\delta}(s_{i}) = Z(s_{i}) - X(s_{i})\widehat{\beta}$$
$$\widehat{Z}(s_{0}) = \widehat{\beta}X(s_{0}) + \sum_{i=1}^{n} \lambda_{i}\widehat{\delta}(s_{i})$$

Objective Simulate random fields according to a distribution such that the values at the measurement sites equal the observed values.

Conditional kriging

- estimate the covariance function C(h)
- $\widehat{Z} = \sum_{i} \lambda_i Z_i$ kriging observations
- simulate a random field Y on D with covariance function C(h)
- $\widehat{Y} = \sum_{i} \lambda_i Y_i$ kriging the simulated values at the measurement locations
- $\widehat{Z}+Y-\widehat{Y}$ is a conditional simulation.

Precipitation after Chernobyl

Chernobyl rainfall in Switzerland

Ordinary kriging

Standard deviation error

Anisotropic kriging

ECAS (Lisboa, Portugal)

Chernobyl rainfall in Switzerland

Altitude (m)

ECAS (Lisboa, Portugal)

Spatio-temporal geostatistics

Krigeage avec un modele exponential avec l'altitude

ECAS (Lisboa, Portugal)

Conditional simulation

ECAS (Lisboa, Portugal)

Spatio-temporal geostatistics

Chernobyl rainfall in Switzerland

Proba(Z > 300)

ECAS (Lisboa, Portugal)

2 random fields $Z_1(.), Z_2(.)$

 $(s_{ik}, k = 1, n_i)$ measurement locations of field Z_i .

- isotopic case: $s_{1k} = s_{2k} = s_k$
- heterotopic case: locations do not coincide at all (total), or partially (partial).

Stationary assumptions:

- $\mathsf{E}(Z_i(s)) = \mu_i, \operatorname{cov}(Z_i(s), Z_j(s+h)) = c_{ij}(h)$
- if Z isotropic $c_{ij}(h) = c_{ij}(||h||)$

Properties

- $c_{ij}(h) = c_{ji}(-h)$
- $|c_{ij}(h)| \le \sqrt{c_{ii}(0)c_{jj}(0)}$

Cokriging

Stationary joint increments

- $E(Z_j(s+h) Z_j(s)) = 0$,
- $\operatorname{cov}(Z_i(s+h) Z_i(s), Z_j(s+h) Z_j(s)) = 2\gamma_{ij}(h)$

Cross variogram

if stationary
$$\gamma_{ij}(h) = c_{ij}(0) - \frac{1}{2}(c_{ij}(h) + c_{ij}(-h))$$

Cross pseudo-variogram

$$\begin{split} \widetilde{\gamma}_{ij}(h) &= \frac{1}{2} \mathsf{Var}(Z_i(s+h) - Z_j(s)) \\ &= \frac{1}{2} (c_{ii}(0) + c_{jj}(0)) - c_{ij}(-h) \text{ if stationary} \end{split}$$

Cokriging

Linear predictor

$$\widehat{Z}_1(s) - \mu_1(s) = \sum_{k=1}^{n_1} \lambda_{1k} (Z_1(s_{1k}) - \mu_1(s_{1j})) + \sum_{k=1}^{n_2} \lambda_{2k} (Z_2(s_{2k}) - \mu_2(s_{2j}))$$

Minimize $\mathsf{E}(\widehat{Z}_1(s) - Z_1(s))^2$ such that $\mathsf{E}(\widehat{Z}_1(s) - Z_1(s)) = 0$

$$\sum_{j=1}^{2} \sum_{l=1}^{n_j} \lambda_{jl} \gamma_{ij} (s_{ik} - s_{jl}) + \alpha_i = \gamma_{1i} (s_{ik} - s) \quad i = 1, 2 \quad k = 1 \dots n_i$$
$$\sum_{k=1}^{n_1} \lambda_{1k} = 1 \qquad \sum_{k=1}^{n_2} \lambda_{2k} = 0$$

Cokriging variance

$$\sigma_{CO}^{2} = \sum_{i=1}^{2} \sum_{k=1}^{n_{i}} \lambda_{ik} \gamma_{1i}(s_{ik} - s) + \alpha_{1}$$

Variograms estimation

 $\gamma_{ij}(h)$ conditionally negative definite.

Coregionalization models:

$$\gamma_{ij}(h) = \sum_{\ell=0}^{L} b_{ij}^{\ell} \gamma_{\ell}(h) \qquad \Gamma(h) = \sum_{l=0}^{L} B_{\ell} \gamma_{\ell}(h)$$

Each B_l must be positive definite, i.e.

 $b_{11}^\ell \geq 0 \quad ; \quad b_{22}^\ell \geq 0 \quad ; \quad |b_{12}^\ell| \leq \sqrt{b_{11}^\ell b_{22}^\ell}$

Cokriging : topsoil organic carbon

Map the topsoil organic carbon in an agricultural region, using measurements acquired from soil samples (SOC, pH, granulometry) and a DEM (Digital Elevation model)

$$\widehat{C}(s_0) = \mu + \alpha Elev(s_0) + \sum_{i=1}^n \lambda_i C(s_i) + \sum_{k=1}^K \sum_{i=1}^n \beta_i^k X^k(s_i)$$

Package RGeostats

ECAS (Lisboa, Portugal)

Cokriging : topsoil organic carbon

SOC prediction

cokriging standard deviation

Zaouche et al., 2017

 $Z^1,\,Z^2,\ldots,Z^p$ correlated random fields to predict Cross-covariance function

$$C_{ij}(s,s') = \operatorname{cov}(Z^{i}(s), Z^{j}(s')) = C_{ij}(s-s')$$

Separable

$$C_{ij}(h) = a_{ij}C(h)$$

 $A = [a_{ij}]_{i,j=1...,p}$ positive definite matrix

Non separable (Gneiting)

 $C_{ij}(h) = \sigma_i \sigma_j r_{ij} C(h, \rho_{ij}, \nu_{ij})$

 $C(h, \rho, \nu)$ Matern correlation function, range ρ , order ν $\rho_{ij} = (\rho_i^2 + \rho_j^2)/2$, $\nu_{ij} = (\nu_i + \nu_j)/2$, condition on r_{ij} We suppose $C(\mathbf{h}, u)$ is known (i.e. use plug-in estimator)

Best Linear Unbiaised Predictor

$$Z^*(\mathbf{s}_0, t_0) = \sum_{\mathbf{s}_\alpha, k} \lambda_{\alpha, k} Z(\mathbf{s}_\alpha, t_k)$$

with $t_0 \neq t_k$ and/or $\mathbf{s}_0 \neq s_\alpha$

Many possible contexts

- Prediction : $t_0 \neq t_k$
- Cross validating a whole series at \mathbf{s}_0 : $\mathbf{s}_0 \neq \mathbf{s}_{lpha}$
- Analysis : $t_k \in \{t_0, t_{-1}, t_{-2}, ...\}$ but $(\mathbf{s}_{\alpha}, t_k) \neq (\mathbf{s}_0, t_0)$
- Reanalysis: $t_k \in \{..., t_2, t_1, t_0, t_{-1}, t_{-2}, ...\}$ but $(s_{\alpha}, t_k) \neq (s_0, t_0)$

Simple kriging

When the expectation is 0,

$$Z^*(s_0, t_0) = C_0^t C^{-1} Z$$

with C = Var(Z) and $C_0 = Cov(Z(s_0, t_0), Z)$

When $n_S \times n_T$ is large , C^{-1} is impossible to compute. Need to use

- Moving neighborhood; slow; introduces discontinuities; somehow arbitrary; but good at handling non-stationarity
- \bullet "Tapering": \implies inversion uses sparse matrix computation
- ullet "Low rank" models: C is replaced by a low rank approximation \Longrightarrow over-smoothing
- INLA/SPDE: uses sparse precision matrix representation+sparse matrix computation. R-INLA.

Very efficient in Space. Spatio-temporal models currently limited to separable AR(1) or RW models in time

$$Z(s,t) = \mu(s,t) + Y(s,t) + \varepsilon(s,t) \qquad (s,t) \in D \times T \subset \mathbb{R}^2 \times \mathbb{R}$$

with

$$\mu(s,t) = \sum_{k=1}^{p} \beta_k f_k(X_k(s)) + \sum_{\ell=1}^{q} \beta_\ell f_k(X_\ell(t))$$

Catch-22 situation

- Need to know $\mu(s,t)$ for estimating C(h,u)
- \bullet Need to know C(h,u) for estimating $\mu(s,t)$

Simultaneaous estimation with ML usually intractable in spatio-temporal except with SPDE/INLA with AR(1) or RW in time

$\hookrightarrow \mathsf{use} \mathsf{ an iterative approach}$

ECAS (Lisboa, Portugal)

External Validation (EV)

• Split the dataset in two parts, training set and validation set

Cross Validation (CV)

- Leave-one-out cross validation
- K-fold CV (less costly)

For EV and $K\mbox{-fold}$ CV, one can imagine subsets adapted to the spatio-temporal framework

- spatial : the same validation set of stations for all times
- temporal : all the stations for a subset of times

• Mean square error and Normalized mean square error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Z_i^* - Z_i)^2 \text{ and } NMSE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Z_i^* - Z_i}{\sigma_i^*} \right)^2$$

Logarithmic score

$$\text{LogS} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2} \log(2\pi\sigma_i^{2*}) + \frac{1}{2} \left(\frac{Z_i^* - Z_i}{\sigma_i^*} \right)^2 \right)$$

• Continued Ranked Probability Score

$$\frac{1}{n}\sum_{i=1}^n\int_{-\infty}^\infty (F_i(z)-\mathbf{1}_{Z_i^*\leq z})^2dy$$

with $F_i(z) = \mathbb{P}(Z_i \leq y | Z_j, j \neq i)$

CompRandFld

Kri(...)

enables using tapering covariance non conditional simulations via RFism

gstat

```
krigeST(...)
```

neighborhood may be defined by number max of neighbors, unique in the standard case no simulations

RandomFields

```
RFinterpolate(...)
```

neighborhood defined by number max of neighbors conditional and non-conditional simulations via RFismulate Kri(loc,time,coordx,coordt,corrmodel, param, data)

with

- data : input data, matrix format
- loc : locations to predict coordinates, matrix format
- time : times to predict
- coordx : data coordinates
- coordt : data times
- corrmodel : correlation model
- param : correlation parameters

Returns a matrix of size $nrow(coordx) \times length(coordt)$.

with

- formula : for modelling the trend with possible covariates. ex PM10~1 for ordinary kriging
- data : data, ST format
- newdata : locations to predict coordinates, ST format
- modelList : variogram model, vgmST format
- beta : known mean for simple kriging
- nmax : number max of neighbors for kriging with sliding neighborhood. Unique neighborhood standard case.
- computeVar : kriging variance computation
- other options useless

Returns an object class ST with the predicted values

```
RFinterpolate(model, x, y = NULL, z = NULL, T = NULL,
grid=NULL, distances, dim, data, given=NULL,
err.model, ignore.trend = FALSE, ...)
```

with

- model covariance model with parameters
- data input data, array format (x_i, y_i, z_i, t_i , regular in t_i) or RFsp
- \bullet x, y, z locations to predict coordinates, regular in t
- grid locations to predict on a grid

Returns a vector of length $nx \times ny \times nt$

 $Z(\mathbf{s},t) = \mu(\mathbf{s},t) + Y(\mathbf{s},t) + \varepsilon(s\mathbf{s},t)$

 $\mu(\mathbf{s},t)$: output of CHIMERE model \hookrightarrow kriging residuals

- 103 stations without missing data
- 3 days of data at all observation locations
- locations to predict : the $10km \times 10km$ CHIMERE grid
- predict at four different times : t_{-2} , t_0 , t_1 , t_2

TABLE 4. Leave-one-out RMSE and one-day-ahead $RMSE_{ext}$ computed for 6 estimated spatio-temporal covariance models by leave-one-out cross-validation and external validation. Sep. = Separable model; ProdSum = Product Sum model. Autofit is the automatic fitting using fit.STVartogram Manual indicates manual fit by visual inspection. Metric and SumMetric can only be fitted manually

Mode1	Sep. Autofit	Sep. Manual	ProdSum Autofit	ProdSum Manual	Metric	SumMetric
RMSE	9.73	9.90	9.62	10.03	9.87	10.43
RMSEEXT	12.74	14.35	12.74	13.79	14.70	13.43

TABLE 3. Leave-one-out RMSE and one-day-ahead RMSE_{EXT} computed for 8 estimated spatio-temporal covariance models by leave-one-out cross-validation and external validation.

Model	1	2	3	4	5	6	7	8
RMSE	10.18	9.68	9.78	9.53	9.71	9.74	9.77	9.75
RMSEEXT	12.85	12.08	12.32	11.97	12.57	12.51	12.51	12.36

FIGURE 7. Predicted residuals over France with CompRandFld.

CHIMERE.corrected

FIGURE 10. Corrected PM10 over France with CompRandFld.

• Another point of view : functional kriging (Nerini 2010, Giraldo 2013)

$$\chi : t \in \mathbb{R} \to \chi(t) \in \mathbb{R}$$
$$\widehat{\chi}(s_0) = \sum_{i=1}^n \lambda_i \chi(s)$$

functional variogram or covariance

- Kriging on a sphere : specific covariance functions (Porcu 2018)
- Kriging compositional data (Allard 2017)